UNIVERSITY COLLEGE LONDON

www.mymathscloud.com

University of London

EXAMINATION FOR INTERNAL STUDENTS

For the following qualifications :-

B.Sc. M.Sci.

Mathematics M11B: Analysis 2

COURSE CODE

: MATHM11B

UNIT VALUE

: 0.50

DATE

: 16-MAY-00

TIME

: 14.30

TIME ALLOWED

: 2 hours

00-C0985-3-140

© 2000 University of London

TURN OVER

www.my.mathscloud.com

All questions may be attempted but only marks obtained on the best five solutions will count.

The use of an electronic calculator is not permitted in this examination.

- 1. Let f and g be functions defined on $\mathbb R$ which are differentiable at a. Show that
 - (i) (f+g)'(a) = f'(a) + g'(a);
 - (ii) (fg)'(a) = f'(a)g(a) + f(a)g'(a);
 - (iii) if $g'(a) \neq 0$, $\left(\frac{1}{g}\right)'(a) = \frac{-g'(a)}{(g(a))^2}$.

Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0. \end{cases}$$

Show that f'(x) exists for all x but f' is not continuous at 0.

2. (a) Define $\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}$, α real, n a positive integer. Show that

$$(1+x)^{\alpha} = \sum_{k=0}^{\infty} \begin{pmatrix} \alpha \\ k \end{pmatrix} x^k, \quad \text{for } |x| < 1.$$

(b) If f is a function on \mathbb{R} and

$$|f(x) - f(y)| \le (x - y)^2$$
 for all real x, y

show that f is constant.

- 3. (a) Let f be a continuous and strictly increasing function on [a, b]. Show that f has an inverse f^{-1} which is continuous and strictly increasing on [f(a), f(b)]. Show further that if f is differentiable at some point c, a < c < b, with $f'(c) \neq 0$, then f^{-1} is differentiable at f(c) with $(f^{-1})'(f(c)) = \frac{1}{f'(c)}$.
 - (b) Show that $f(x) = \tan x$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ has an inverse on $(-\infty, \infty)$ and find the derivative of the inverse.

MATHM11B

PLEASE TURN OVER

- 4. (a) Let $\{[a_n, b_n]\}_{n=1}^{\infty}$ be a nested sequence of non-empty closed intervals i.e. $[a_n, b_n] \supset [a_{n+1}, b_{n+1}], \quad n = 1, 2, \ldots$ Show that $\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$. Is the same result true for open intervals?
 - (b) Let $\{I_{\alpha}\}_{\alpha\in A}$ be a collection of open intervals whose union covers the closed interval [a,b]. Show that there exists a finite sub-collection of $\{I_{\alpha}\}_{\alpha\in A}$ whose union covers [a,b]. Is the same result true for an open interval (a,b)?
- 5. If a function f is continuous on [a, b], show that
 - (a) f is uniformly continuous on [a, b];
 - (b) f is Riemann integrable on [a, b].
- 6. (a) Let f be a Riemann integrable function on [a, b] and g a continuous function on \mathbb{R} . Show that h(x) = g(f(x)) is Riemann integrable on [a, b].
 - (b) If f is Riemann integrable on [a, b] and $\frac{1}{|f|}$ is bounded on [a, b], show that $\frac{1}{|f|}$ is Riemann integrable on [a, b].
- 7. (a) Let f be a continuous function on $[1, \infty)$ with
 - (i) $f(x) \ge 0, x \ge 1;$
 - (ii) f(x) decreasing, $x \ge 1$;
 - (iii) $f(x) \to 0$ as $x \to \infty$.

Then, if $T_n = \sum_{r=1}^n f(r) - \int_1^n f(x) dx$, show that

$$f(n) \le T_n \le f(1)$$

and that $[T_n]_{n=1}^{\infty}$ is a decreasing sequence converging to T say, where $0 \le T \le f(1)$.

(b) Show that $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^2}$ converges.